Density of cubic field discriminants

نویسنده

  • David P. Roberts
چکیده

In this paper we give a conjectural refinement of the DavenportHeilbronn theorem on the density of cubic field discriminants. Our refinement is plausible theoretically and agrees very well with computational data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributions of Discriminants of Cubic Algebras Ii

Let k be a number field and O the ring of integers. In the previous paper [T06] we study the Dirichlet series counting discriminants of cubic algebras of O and derive some density theorems on distributions of the discriminants by using the theory of zeta functions of prehomogeneous vector spaces. In this paper we consider these objects under imposing finite number of splitting conditions at non...

متن کامل

Distributions of Discriminants of Cubic Algebras

We study the space of binary cubic and quadratic forms over the ring of integers O of an algebraic number field k. By applying the theory of prehomogeneous vector spaces founded by M. Sato and T. Shintani, we can associate the zeta functions for these spaces. Applying these zeta functions, we derive some density theorems on the distributions of discriminants of cubic algebras of O. In the case ...

متن کامل

Graduate School of Mathematical Sciences Komaba, Tokyo, Japan Distributions of Discriminants of Cubic Algebras

We study the space of binary cubic and quadratic forms over the ring of integers O of an algebraic number field k. By applying the theory of prehomogeneous vector spaces founded by M. Sato and T. Shintani, we can associate the zeta functions for these spaces. Applying these zeta functions, we derive some density theorems on the distributions of discriminants of cubic algebras of O. In the case ...

متن کامل

Error Estimates for the Davenport–heilbronn Theorems

We obtain the first known power-saving remainder terms for the theorems of Davenport and Heilbronn on the density of discriminants of cubic fields and the mean number of 3-torsion elements in the class groups of quadratic fields. In addition, we prove analogous error terms for the density of discriminants of quartic fields and the mean number of 2-torsion elements in the class groups of cubic f...

متن کامل

The Euclidean Algorithm in Cubic Number Fields

In this note we present algorithms for computing Euclidean minima of cubic number fields; in particular, we were able to find all normEuclidean cubic number fields with discriminants −999 < d < 104.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2001